Unit -III Differential calculus

Part –A

1. Define-Curvature and radius of curvature.

Ans: The rate of bending of the curve with respect to actual distance at'p' is called the curvature of the curve, which is denoted by 'k'. Therefore, $k=\delta_{S\to 0} \partial \psi \partial s=d\psi/ds$. Radius of curvature is reciprocal of curvature and it is denoted by ρ . therefore, $\rho=1/k$.

2. What is the curvature of $x^2+y^2-4x-6y+10=0$ at any point on it?

Ans: The given eqn is a circle, with radius $\sqrt{u^2+v^2}-d=\sqrt{2^2+3^2}-10=\sqrt{3}$.W.K.T for a circle k=1/radius,k=1/ $\sqrt{3}$.

3. Find the radius of curvature at (3,-4) to the curve $x^2+y^2=25$.

Ans; The given eqn is a circle with radius r=5.therefore k=1/radius=1/5. $\rho=1/k=1/5=5$.

4. Find the curvature of the curve $2x^2+2y^2+5x-2y+1=0$

Ans: $2x^2+2y^2+5x-2y+1=0$, $x^2+y^2+(5/2)x-y+(1/2)=0$, which is a eqn of a circle. Therefore, $k=1/radius=1/(\sqrt{21/4})=4/\sqrt{21}$

5. Find the radius of curvature at $x=\pi/2$ on the curve $y=4\sin x-\sin 2x$.

Ans: $y=4\sin x - \sin 2x$. $x=\pi/2$. Therefore, $4\sin(\pi/2) - \sin 2(\pi/2) = 4$, Therefore, the point is $(\pi/2,4)$. $\rho = [1+y']^{3/2}/y''$ $y'=dy/dx=4\cos x - 2\cos 2x$, $y'_{(\pi/2,4)}=2$, similarly, $y''=d^2y/dx^2=-4\sin x + 4\sin 2x$, $y''_{(\pi/2,4)}=-4$ Therefore, $\rho=5\sqrt{5/4}$.

6. What is the curvature of a)straight line b)circle of radius 2 units

Ans: a)for straight lines k=0 b)for circle of radius 2 units,k=2

7. Find the radius of curvature of any point(x,y) on $y=a \log \operatorname{seec}(x/a)$

Ans: $y' = tan(x/a), y'' = (1/a)sec^2(x/a), \rho = a.sec(x/a).$

8. Find the radius of curvature of the curve $y=a \cos h(x/a)$ at any point on it.

Ans: $y' = \sinh(x/a)$, $y'' = (1/a)\cosh(x/a)$, $\rho = \{1 + \sinh^2(x/a)\}^{3/2}/(1/a)\cosh(x/a)$ $= [\cosh^2(x/a)]^{3/2} / (1/a)\cosh(x/a)$ $= a.\cosh(x/a) = a.y^2/a^2 = y^2/a$

9. Find the radius of curvature at y=2a on the curve $y^2=4ax$

Ans: y=2a,x=a Differentiating the given eqn,2y.y'=4a $y'=4a/2y=2ay^{-1}, y'_{(a,2a)}=2a/2a=1.$ $y''=-2a/y^2; y''_{(a,2a)}=-2a/4a^2=-1/2a$ $\rho = [1+y']^{3/2} / y''$ $\rho_{(a,2a)}=\{1+1\}^{3/2}/(-1/2a) = 2a.2^{3/2} = 2^{5/2}.a$

10.For the curve $x^2 = 2c(y-c)$, find the radius of curvature at (0,c).

Ans: $x^2 = 2c(y-c)$.-----(1). Differentiate with respect to x. 2x = 2cy'. y' = (x/c). y'' = 1/c. Find the envelope of the family of straight lines $x\cos\alpha + y\sin\alpha = P$,where α is the parameter. $\rho = [1+y']^{3/2} / y''$ $= [1 + (x/c)]^{3/2} / (1/c)$. $P_{(0,c)} = c$.

11. Write the formula for radius of curvature in Cartesian form, parametric form, and polar form.

Ans: (i) Cartesian form : $\rho = [1+y']^{3/2} / y''$ (ii) Parametric form : $\rho = [x'^2+y'^2]^{3/2} / [x'y''-x''y']$ (iii) polar form : $\rho = [r'^2+r^2]^{3/2} / [r^2+2r'-rr''].$

12. Find the envelope of the family of straight lines $y = mx \pm (m^2 - 1)^{1/2}$, where m is the parameter

Ans: $y = mx \pm (m^2 - 1)^{1/2}$. $m^2 - 1 = y^2 + m^2x^2 - 2mxy$. $(x^2 - 1) m^2 - 2xym + y^2 + 1 = 0$. The envelope is given by equation $4 x^2 y^2 - 4(x^{2-1}) (y^2 + 1) = 0$. $(x^2 / 1) - (y^2 / 1) = 1$. 13. Find the envelope of the family of straight lines y = mx + (a/m), where m is the parameter

Ans: y = mx + (a/m). y = mx + (a/m). $m^{2}x-my+a = 0$.

The envelope is given by equation., $y^2 - 4ax = 0$, which is a parabola.

14. Find the envelope of the family of straight lines $y = mx + am^{2}$, where m is the parameter

Ans: $y = mx + am^2$. $am^2 + mx - y = 0$. The envelope is given by $x^2 + 4xy = 0$.

15. Find the envelope of the family of straight lines $x\cos\alpha + y\sin\alpha = P$, where α is the parameter.

Ans: $x\cos\alpha + y\sin\alpha = P$ -----(1) Differentiate (1) patialy with respect to α , - $x\sin\alpha + y\cos\alpha = 0$ -----(2) (1)² + (2)² gives, x²+y²=p².

16. Find the envelope of the family of circles $(x-a)^2+y^2 = 4a$.

Ans: $(x-a)^2+y^2 = 4a$(1) Differentiate (1) patialy with respect to α , 2(x-a)(-1)+0 = 4. a = x+2. (1) Implies $y^2-4x = 4$.

17. Find the envelope of the family of straight lines $x\cos\alpha + y\sin\alpha = a \sec\alpha$, where α is the parameter.

Ans: $x\cos\alpha + y\sin\alpha = a \sec\alpha$. Divide by $\cos\alpha$ $x + y \tan\alpha = a \sec^2\alpha$. $a \tan^2\alpha - y\tan\alpha + (a-x) = 0$. The envelope is given by $y^2 = 4a(a-x)$.

18. Find the envelope of (x/t) + yt = 2c, t is the parameter.

Ans: (x/t) + yt = 2c $yt^{2}+x = 2ct$. $yt^{2}+x - 2ct = 0$. The envelope is given by $xy = c^{2}$. 19. Show that the family of circles $(x-a)^2+y^2=a^2$, a is the parameter has no envelope.

```
Ans: (x-a)^2+y^2=a^2.----(1)
20.Diffrentiate (1) patialy with respect to \alpha,
-2(x-a) = 2a.
x = 2a.
Therefore y = 0.
```

20. If the centre of curvature is $((c/a) \cos^3 t, (c/a) \sin^3 t)$, find the evolute of curve.

Ans:
$$\overline{x} = (c/a)\cos^3 t$$
, $\overline{y} = (c/a)\sin^3 t$,
 $(ax)^{2/3} + (ay)^{2/3} = c^{2/3}$.

Part -B

1. Find the radius of curvature at t on $x = e^t$ on $x = e^t$ cost, $x = e^t$ sint.

2. Find the evolute of the rectangular hyperbola $xy = c^2$.

3. Find the equation of the envelope of (x/a)+(y/b)=1, where the parameters a and are connected by the relation $a^2+b^2=c^2$ and c is the a constant.

4. Find the equation of the circle of curvature at (a/4,a/4) for the curve $\sqrt{x}+\sqrt{y}=\sqrt{a}$

5. Find the evolute of of the curve $x=a(\cos\theta+\theta\sin\theta), y=a(\sin\theta-\theta\cos\theta)$.

6. Find the radius of curvature at (1,1) to the curve $x^{2/3}+y^{2/3}=2$.

7.Prove that the envelope of the family of straight lines $y = mx - 2am - am^3$ is $27ay^2 = 4(x - 2a)^3$.

8.find the locus of the centre of curvature of parabola $y^2 = 4ax$.

9. Prove that envelope of (x/a)+(y/b)=1, where the parameters a and are connected by the relation a+b=c is $\sqrt{x}+\sqrt{y}=\sqrt{c}$.

10.In the curve $\sqrt{(x/a)} + \sqrt{(y/b)} = 1$, show that the radius of curvature at the point (x,y) varies as $(ax+by)^{3/2}$.

11.Show that the evolute of the hyperbola $(x^2/a^2)+(y^2/b^2)=1$ is $(ax)^{2/3}-(by)^{2/3}=(a^2+b^2)^{2/3}$.

12. Find the radius of curvature at the point (r, θ) on the curve $r = a \cos \theta$.

13. Find the evolute of the parabola $y^2 = 4ax$ considering it as the envelope of its normals.

14. Find the equation of the envelope of $(x^2/a^2)+(y^2/b^2)=1$, where the parameters a and are connected by the relation a+b=c.

15. If ρ is the radius of curvature at any point (x,y) on the curve y = (ax / (a+x)) prove that $(2\rho/a)^{2/3} = (x/y)^2 + (y/x)^2$.

16. Find the radius of curvature of the curve $r = a (1 + \cos \theta)$ at $\theta = \pi/2$.

17.If centre of the curvature of ellipse $(x^2/a^2)+(y^2/b^2)=1$ at one end of the minor axes lies at the other end. Prove that the eccentricity of the ellipse is $1/\sqrt{2}$

18.Prove that the evolute of the curve $x = a(\cos\theta + \log(\tan \theta/2)), y = a \sin \theta$ is the catenary $y = a \cosh(x/a)$.

19. Find the envelope of $(ax/\cos\theta)$ - $(by/\sin\theta) = (a^2-b^2)$ where θ is the parameter.

20. Find the radius of curvature at the point $\theta=0$ on the curve $r=ae^{\theta cot\alpha}$.