Unit -III Differential calculus

Part -A

1. Define-Curvature and radius of curvature.

Ans:The rate of bending of the curve with respect to actual distance at' p ' is called the curvature of the curve, which is denoted by ' k '. Therefore, $\mathrm{k}=\delta_{\mathrm{S} \rightarrow 0} \partial \psi / \partial \mathrm{s}=\mathrm{d} \psi / \mathrm{ds}$.
Radius of curvature is reciprocal of curvature and it is denoted by ρ.therefore, $\rho=1 / \mathrm{k}$.
2. What is the curvature of $x^{2}+y^{2}-4 x-6 y+10=0$ at any point on it?

Ans: The given eqn is a circle, with radius $\sqrt{u^{2}}+v^{2}-d=\sqrt{ } 2^{2}+3^{2}-10=\sqrt{ }$. W.K.T for a circle $\mathrm{k}=1 /$ radius, $\mathrm{k}=1 / \sqrt{ } 3$.
3. Find the radius of curvature at $(3,-4)$ to the curve $x^{2}+y^{2}=25$.

Ans; The given eqn is a circle with radius $\mathrm{r}=5$.therefore $\mathrm{k}=1 /$ radius $=1 / 5$. $\rho=1 / \mathrm{k}=1 / 5=5$.
4. Find the curvature of the curve $2 x^{2}+2 y^{2}+5 x-2 y+1=0$

Ans: $2 x^{2}+2 y^{2}+5 x-2 y+1=0, x^{2}+y^{2}+(5 / 2) x-y+(1 / 2)=0$, which is a eqn of a circle.
Therefore, $k=1 /$ radius $=1 /(\sqrt{ } 21 / 4)=4 / \sqrt{ } 21$
5. Find the radius of curvature at $x=\pi / 2$ on the curve $y=4 \sin x-\sin 2 x$.

Ans: $y=4 \sin x-\sin 2 x . x=\pi / 2$. Therefore, $4 \sin (\pi / 2)-\sin 2(\pi / 2)=4$, Therefore, the point is $(\pi / 2,4)$.
$\rho=\left[1+y^{\prime}\right]^{3 / 2} / y^{\prime \prime}$
$y^{\prime}=d y / d x=4 \cos x-2 \cos 2 x$,
$\mathrm{y}^{\prime}(\pi / 2,4)=2$, similarly,
$y^{\prime \prime}=d^{2} y / d x^{2}=-4 \sin x+4 \sin 2 x$,
$y^{\prime \prime}(\pi / 2,4)=-4$
Therefore, $\rho=5 \sqrt{ } 5 / 4$.
6. What is the curvature of a)straight line b)circle of radius 2 units

Ans: a)for straight lines $\mathrm{k}=0$
b)for circle of radius 2 units, $k=2$
7.Find the radius of curvature of any point (x, y) on $y=a \log \operatorname{seec}(x / a)$

Ans: $y^{\prime}=\tan (x / a), y^{\prime \prime}=(1 / a) \sec ^{2}(x / a), \rho=a \cdot \sec (x / a)$.
8. Find the radius of curvature of the curve $y=a \cos h(x / a)$ at any point on it.

Ans: $y^{\prime}=\sinh (x / a), y^{\prime \prime}=(1 / a) \cosh (x / a)$,
$\rho=\left\{1+\sinh ^{2}(\mathrm{x} / \mathrm{a})\right\}^{3 / 2} /(1 / \mathrm{a}) \cosh (\mathrm{x} / \mathrm{a})$

$$
\begin{aligned}
& =\left[\cosh ^{2}(x / a)\right]^{3 / 2} /(1 / a) \cosh (x / a) \\
& =a \cdot \cosh (x / a)=a \cdot y^{2} / a^{2}=y^{2} / a
\end{aligned}
$$

9. Find the radius of curvature at $y=2 a$ on the curve $y^{2}=4 a x$

Ans: $y=2 a, x=a$
Differentiating the given eqn, $2 \mathrm{y} \cdot \mathrm{y}^{\prime}=4 \mathrm{a}$

$$
\begin{aligned}
& y^{\prime}=4 \mathrm{a} / 2 \mathrm{y}=2 \mathrm{ay}^{-1}, \mathrm{y}^{\prime}(\mathrm{a}, 2 \mathrm{a})=2 \mathrm{a} / 2 \mathrm{a}=1 . \\
& \mathrm{y}^{\prime \prime}=-2 \mathrm{a} / \mathrm{y}^{2} ; \mathrm{y}^{\prime \prime}(\mathrm{a}, \mathrm{a})=-2 \mathrm{a} / 4 \mathrm{a}^{2}=-1 / 2 \mathrm{a} \\
& \rho=\left[1+\mathrm{y}^{\prime}\right]^{3 / 2} / \mathrm{y}^{\prime \prime} \\
& \rho_{(\mathrm{a}, 2 \mathrm{a})}=\{1+1\}^{3 / 2} /(-1 / 2 \mathrm{a})=2 \mathrm{a} \cdot 2^{3 / 2}=2^{5 / 2} \cdot \mathrm{a}
\end{aligned}
$$

10.For the curve $x^{2}=2 c(y-c)$, find the radius of curvature at $(0, c)$.

Ans: $x^{2}=2 c(y-c)$. \qquad
Differentiate with respect to x .
$2 \mathrm{x}=2 \mathrm{cy}$ '.
$y^{\prime}=(x / c)$.
$y^{\prime \prime}=1 / c$.
Find the envelope of the family of straight lines $\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha=\mathrm{P}$, where α is the parameter.

$$
\begin{aligned}
& \rho=\left[1+y^{\prime}\right]^{3 / 2} / \mathrm{y}^{\prime \prime} \\
&=[1+(\mathrm{x} / \mathrm{c})]^{3 / 2} /(1 / \mathrm{c}) . \\
& \mathrm{P}_{(0, \mathrm{c})}=\mathrm{c} .
\end{aligned}
$$

11.Write the formula for radius of curvature in Cartesian form, parametric form, and polar form.

Ans:
(i) Cartesian form :

$$
\rho=\left[1+y^{\prime}\right]^{3 / 2} / y^{\prime \prime}
$$

(ii) Parametric form :
(iii) polar form

$$
\rho=\left[x^{\prime 2}+y^{\prime 2}\right]^{3 / 2} /\left[x^{\prime} y^{\prime \prime}-x^{\prime} y^{\prime}\right]
$$

$$
\rho=\left[r^{\prime 2}+r^{2}\right]^{3 / 2} /\left[r^{2}+2 r^{\prime}-r r^{\prime}\right]
$$

12. Find the envelope of the family of straight lines $y=m x \pm\left(m^{2}-1\right)^{1 / 2}$, where m is the parameter

Ans: $\mathrm{y}=\mathrm{mx} \pm\left(\mathrm{m}^{2}-1\right)^{1 / 2}$.
$m^{2}-1=y^{2}+m^{2} x^{2}-2 m x y$.
$\left(x^{2}-1\right) m^{2}-2 x y m+y^{2}+1=0$.
The envelope is given by equation

$$
\begin{aligned}
4 \mathrm{x}^{2} \mathrm{y}^{2}-4\left(\mathrm{x}^{2-1}\right)\left(\mathrm{y}^{2}+1\right) & =0 \\
\left(\mathrm{x}^{2} / 1\right)-\left(\mathrm{y}^{2} / 1\right) & =1
\end{aligned}
$$

13. Find the envelope of the family of straight lines $y=m x+(a / m)$.
,where m is the parameter

$$
\text { Ans: } y=m x+(a / m)
$$

$$
\mathrm{y}=\mathrm{mx}+(\mathrm{a} / \mathrm{m})
$$

$$
\mathrm{m}^{2} \mathrm{x}-\mathrm{my}+\mathrm{a}=0
$$

The envelope is given by equation., $\mathrm{y}^{2}-4 \mathrm{ax}=0$, which is a parabola.
14. Find the envelope of the family of straight lines $y=m x+m^{2}$, where m is the parameter

Ans: $y=m x+a^{2}$.
$a m^{2}+m x-y=0$.
The envelope is given by $x^{2}+4 x y=0$.
15. Find the envelope of the family of straight lines $x \cos \alpha+y \sin \alpha=P$, where α is the parameter.

Ans: $\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha=\mathrm{P}$
Diffrentiate (1) patialy with respect to α,
$-x \sin \alpha+y \cos \alpha=0 .---------(2)$
$(1)^{2}+(2)^{2}$ gives, $\mathrm{x}^{2}+\mathrm{y}^{2}=\mathrm{p}^{2}$.
16. Find the envelope of the family of circles $(x-a)^{2}+y^{2}=4 a$.

Ans: $\quad(x-a)^{2}+y^{2}=4 a .-------(1)$

> Diffrentiate (1) patialy with respect to α, $2(x-a)(-1)+0=4$. $a=x+2$.
(1) Implies $y^{2}-4 x=4$.
17. Find the envelope of the family of straight lines $x \cos \alpha+y \sin \alpha=a \sec \alpha$, where α is the parameter.

Ans: $\mathrm{x} \cos \alpha+\mathrm{y} \sin \alpha=\mathrm{a} \sec \alpha$.
Divide by $\cos \alpha$
$\mathrm{x}+\mathrm{y} \tan \alpha=\mathrm{a} \sec ^{2} \alpha$.
$a \tan ^{2} \alpha-y \tan \alpha+(a-x)=0$.
The envelope is given by $y^{2}=4 a(a-x)$.
18. Find the envelope of $(x / t)+y t=2 c, t$ is the parameter.

Ans: $(\mathrm{x} / \mathrm{t})+\mathrm{yt}=2 \mathrm{c}$

$$
\mathrm{yt}^{2}+\mathrm{x}=2 \mathrm{ct}
$$

$$
\mathrm{yt}^{2}+\mathrm{x}-2 \mathrm{ct}=0.0
$$

The envelope is given by $x y=c^{2}$.
19. Show that the family of circles $(x-a)^{2}+y^{2}=a^{2}, a$ is the parameter has no envelope.

Ans: $(x-a)^{2}+y^{2}=a^{2} .------(1)$
20.Diffrentiate (1) patialy with respect to α, $-2(x-a)=2 a$.
$\mathrm{x}=2 \mathrm{a}$.
Therefore $\mathrm{y}=0$.
20.If the centre of curvature is $\left((\mathrm{c} / \mathrm{a}) \cos ^{3} \mathrm{t},(\mathrm{c} / \mathrm{a}) \sin ^{3} \mathrm{t}\right)$,find the evolute of curve.

Ans: $\overline{\mathrm{x}}=(\mathrm{c} / \mathrm{a}) \cos ^{3} \mathrm{t}, \overline{\mathrm{y}}=(\mathrm{c} / \mathrm{a}) \sin ^{3} \mathrm{t}$,

$$
(a x)^{2 / 3}+(a y)^{2 / 3}=c^{2 / 3} .
$$

Part -B

1. Find the radius of curvature at t on $x=e^{t}$ on $x=e^{t} \cos t, x=e^{t} \sin t$.
2. Find the evolute of the rectangular hyperbola $x y=c^{2}$.
3.Find the equation of the envelope of $(x / a)+(y / b)=1$, where the parameters a and are connected by the relation $\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}$ and c is the a constant.
3. Find the equation of the circle of curvature at $(a / 4, a / 4)$ for the curve $\sqrt{ } x+\sqrt{ } y=\sqrt{ } a$
4. Find the evolute of of the curve $\mathrm{x}=\mathrm{a}(\cos \theta+\theta \sin \theta), \mathrm{y}=\mathrm{a}(\sin \theta-\theta \cos \theta)$.
5. Find the radius of curvature at $(1,1)$ to the curve $x^{2 / 3}+y^{2 / 3}=2$.
7.Prove that the envelope of the family of straight lines $y=m x-2 a m-a m^{3}$ is $27 a y^{2}=4(x-2 a)^{3}$.
8.find the locus of the centre of curvature of parabola $y^{2}=4 a x$.
6. Prove that envelope of $(x / a)+(y / b)=1$, where the parameters a and are connected by the relation $a+b=c$ is $V_{x}+\sqrt{ } y=\sqrt{ }$ c.
10.In the curve $\sqrt{ }(x / a)+\sqrt{ }(y / b)=1$, show that the radius of curvature at the point (x, y) varies as (ax+by) ${ }^{3 / 2}$.
7. Show that the evolute of the hyperbola $\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1$ is $(a x)^{2 / 3}-(b y)^{2 / 3}=\left(a^{2}+b^{2}\right)^{2 / 3}$.
8. Find the radius of curvature at the point (r, θ) on the curve $r=a \cos \theta$.
9. Find the evolute of the parabola $y^{2}=4 a x$ considering it as the envelope of its normals.
10. Find the equation of the envelope of $\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1$, where the parameters a and are connected by the relation $\mathrm{a}+\mathrm{b}=\mathrm{c}$.
15.If ρ is the radius of curvature at any point (x, y) on the curve $y=(a x /(a+x))$ prove that $(2 \rho / a)^{2 / 3}=(x / y)^{2}+(y / x)^{2}$.
11. Find the radius of curvature of the curve $\mathrm{r}=\mathrm{a}(1+\cos \theta)$ at $\theta=\pi / 2$.
17.If centre of the curvature of ellipse $\left(x^{2} / a^{2}\right)+\left(y^{2} / b^{2}\right)=1$ at one end of the minor axes lies at the other end.Prove that the eccentricity of the ellipse is $1 / \sqrt{ } 2$
18.Prove that the evolute of the curve $x=a(\cos \theta+\log (\tan \theta / 2)), y=a \sin \theta$ is the catenary $y=\operatorname{acosh}(x / a)$.
19.Find the envelope of $(a x / \cos \theta)-(b y / \sin \theta)=\left(a^{2}-b^{2}\right)$ where θ is the parameter.
20.Find the radius of curvature at the point $\theta=0$ on the curve $r=a e^{\theta c o t a}$.
